

第466回GMSI公開セミナー/第211回WINGSセミナー

Applications of thermo-optic phase spectroscopy (TOPS) to design of materials for thermal conductivity, dynamics of phase transformations, and thermal management of microelectronics

Professor David G. Cahill

Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign

Date: Friday, December 12, 2025 14:00-15:00 Venue: Faculty of Engineering Bldg. 2, Room 31A

Abstract:

We recently developed a suite of quantitative optical beam-deflection methods to accelerate understanding of the thermophysical properties of materials. Thermo-optic phase spectroscopy (TOPS) offers exceptional signal-to-noise at micron-scale spatial resolution. The optical instrument uses superluminescent diodes as the light sources and is simple and low-cost. We have extensively applied a photothermal displacement variant (D-TOPS) in our studies of the molecular design of polymers with an expanded range of low and high thermal conductivities. D-TOPS also enables dynamic probing of phase transformations by capturing the frequency-dependence of the thermal expansion coefficient. Immersion-TOPS uses thermo-optic (mirage effect) detection of temperature fields to achieve a large enhancement in sensitivity compared to thermoreflectance when working on the 30-100 µm length-scales needed to probe 3D integrated circuits. These capabilities position TOPS as a powerful platform for materials discovery and thermal property metrology.

Prof. David G. Cahill University of Illinois Urbana-Champaign

Bio: David Cahill is the Grainger Distinguished Chair in Engineering, and Professor of Materials Science and Engineering at the University of Illinois Urbana-Champaign. He joined the faculty of the U. Illinois after earning his Ph.D. in condensed matter physics from Cornell University and working as a postdoctoral research associate at the IBM Watson Research Center. He served as department head from 2010 to 2018. His research program advances physical insights on thermal transport at the nanoscale; extremes of low and high thermal conductivity in polymers; thermal metrology for microelectronics; and the thermal science of electrochemical cells and battery materials. Cahill received the 2018 Innovation in Materials Characterization Award of the Materials Research Society, the 2015 Touloukian Award of the American Society of Mechanical Engineers, and the Klemens Award from the International Conference on Phonon Scattering in Condensed Matter. He is a fellow of the MRS, the American Physical Society, the AAAS, and is an elected member of the American Academy of Arts and Sciences.

東京大学大学院工学系研究科専攻間横断型教育プログラム 機械システム・イノベーション (GMSI) 主催:

未来社会協創国際卓越大学院(WINGS CFS)

量子·半導体科学技術国際卓越大学院(WINGS-QSTEP) 統合物質·科学国際卓越大学院(MERIT-WINGS) 高齢社会総合研究国際卓越大学院(WINGS-GLAFS)

「グリーントランスフォーメーション(GX)を先導する高度人材育成」プロジェクト(SPRING GX)

東京大学大学院工学系研究科総合研究機構 教授 塩見 淳一郎 本件連絡先:

GMSI事務局 E-mail: office@gmsi.t.u-tokyo.ac.jp Phone: 03-5841-0696